16,020 research outputs found

    Stochastic dynamics of a Josephson junction threshold detector

    Full text link
    We generalize the stochastic path integral formalism by considering Hamiltonian dynamics in the presence of general Markovian noise. Kramers' solution of the activation rate for escape over a barrier is generalized for non-Gaussian driving noise in both the overdamped and underdamped limit. We apply our general results to a Josephson junction detector measuring the electron counting statistics of a mesoscopic conductor. Activation rate dependence on the third current cumulant includes an additional term originating from the back-action of the measurement circuit.Comment: 5 pages, 2 figures, discussion of experiment added, typos correcte

    Sufficient conditions for uniqueness of the weak value

    Get PDF
    We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel J, Agarwal S and Jordan A N 2010 Phys. Rev. Lett. 104, 240401. We also respond to criticism of our work in [arXiv:1105.4188v1] concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the measurement emerges and the unique definition in the weak limit holds. We also prove a theorem regarding the uniqueness of the definition under our sufficient conditions for the general case. Finally, a second proposed counter-example in [arXiv:1105.4188v6] is shown not to satisfy the sufficiency conditions for the provided theorem.Comment: 17 pages, final published respons

    Action principle for continuous quantum measurement

    Get PDF
    We present a stochastic path integral formalism for continuous quantum measurement that enables the analysis of rare events using action methods. By doubling the quantum state space to a canonical phase space, we can write the joint probability density function of measurement outcomes and quantum state trajectories as a phase space path integral. Extremizing this action produces the most-likely paths with boundary conditions defined by preselected and postselected states as solutions to a set of ordinary differential equations. As an application, we analyze continuous qubit measurement in detail and examine the structure of a quantum jump in the Zeno measurement regime.Comment: Published version. 8 pages, 3 figures, movies available at http://youtu.be/OQ3PwkSKEUw and http://youtu.be/sTlV2amQtj

    Thermal correlators of anyons in two dimensions

    Full text link
    The anyon fields have trivial α\alpha-commutator for α\alpha not integer. For integer α\alpha the commutators become temperature-dependent operator valued distributions. The nn-point functions do not factorize as for quasifree states.Comment: 14 pages, LaTeX (misprints corrected, a reference added

    Weak measurement of quantum dot spin qubits

    Full text link
    The theory of weak quantum measurements is developed for quantum dot spin qubits. Building on recent experiments, we propose a control cycle to prepare, manipulate, weakly measure, and perform quantum state tomography. This is accomplished using a combination of the physics of electron spin resonance, spin blockade, and Coulomb blockade, resulting in a charge transport process. We investigate the influence of the surrounding nuclear spin environment, and find a regime where this environment significantly simplifies the dynamics of the weak measurement process, making this theoretical proposal realistic with existing experimental technology. We further consider spin-echo refocusing to combat dephasing, as well as discuss a realization of "quantum undemolition", whereby the effects of quantum state disturbance are undone.Comment: 8 pages, 2 figure
    • …
    corecore